9D9抗体在不同小鼠肿瘤模型中怎么给药?

Fig 1 CD4+ T cells play a crucial role in immune checkpoint inhibitor treatment against tumor growth. Tumor growth of (A) MB49 (n = 7), EMT-6 (n = 5), CT26WT (n = 7) and Hepa1-6 (n = 5) tumors with or without anti-CTLA-4 Ab treatment (n = 7). The average tumor volume is shown as the mean ± standard error of the mean (SEM). * P < 0.05, ** P < 0.01, *** P < 0.001 by Mann-Whitney test at the endpoint. (B, C) Tumor growth of Hepa1-6 or Hepa1-6#12 tumors with or without anti-CTLA-4 Ab co-administered with a depleting Ab against CD4+ or CD8+ T cells. These depletion Abs were injected via intraperitoneal administration starting 2 days prior to tumor cell injection and continued weekly. The average tumor volume is shown as the mean ± SEM (n = 7–8). * P < 0.05, ** P < 0.01, *** P < 0.001 by one-way ANOVA followed by Dunnett’s test at the endpoint.
Figure 4 CTLA-4 blockade is less effective in aged mice. CT26 tumor cells were subcutaneously implanted on the flank of female BALB/c mice either at 6-8 weeks old (young) or at 60-72 weeks old (aged). (A, B) The mice were treated with anti-CTLA-4 antibody IP at 10 mg/kg twice weekly starting 7 days after tumor cell implantation for a total of 6 doses. (A) Kaplan-Meier curves showing time-to-welfare endpoint. 38 mice per group. (B) Fold change in rate of tumor growth for each animal in both young and aged mice after anti-CTLA-4 antibody treatment compared to age-matched untreated mice. 38 mice per group. (C, D) The mice were treated IP at 10 mg/kg twice weekly for a total of 6 doses with a combination of anti-PD-L1 antibody (starting 4 days after tumor cell implantation) and anti-CTLA-4 antibody (starting 7 days after tumor cell implantation). (C) Kaplan-Meier curves showing time-to-welfare endpoint. 37-38 mice per group. (D) Fold change in rate of tumor growth for each animal in both young and aged mice after anti-PD-L1 and anti-CTLA-4 antibodies compared to age-matched untreated mice. 37-38 mice per group. The results in panels (A, B) include data from 3 experiments and the results in panels (C, D) include data from 4 experiments. ns, non-significant, *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
Fig 1 CD4+ T cells play a crucial role in immune checkpoint inhibitor treatment against tumor growth. Tumor growth of (A) MB49 (n = 7), EMT-6 (n = 5), CT26WT (n = 7) and Hepa1-6 (n = 5) tumors with or without anti-CTLA-4 Ab treatment (n = 7). The average tumor volume is shown as the mean ± standard error of the mean (SEM). * P < 0.05, ** P < 0.01, *** P < 0.001 by Mann-Whitney test at the endpoint. (B, C) Tumor growth of Hepa1-6 or Hepa1-6#12 tumors with or without anti-CTLA-4 Ab co-administered with a depleting Ab against CD4+ or CD8+ T cells. These depletion Abs were injected via intraperitoneal administration starting 2 days prior to tumor cell injection and continued weekly. The average tumor volume is shown as the mean ± SEM (n = 7–8). * P < 0.05, ** P < 0.01, *** P < 0.001 by one-way ANOVA followed by Dunnett’s test at the endpoint.
Figure 1 The effect of anti-PD-1 and anti-CTLA-4 antibodies on the tumor growth in B16-F10-bearing mice. (A) A schematic diagram illustrating the chronological events of experiments (n=8). (B) Tumor growth kinetics in anti-PD-1 day 1-4-7, anti-PD-1 day 11-14-17 or anti-CTLA-4 day 1-4-7 treated B16-F10-bearing mice, compared with vehicle (n=2). Data are mean ± SEM. (C,D,E,F,G,H) The correlation of tumor size and tumor-infiltrating and splenic immune cell population infiltrating CD45+CD3+ (C), CD45+CD3+CD8+ T cells (D), CD45+CD3+CD4+ T cells (E) and CD45+CD11b+ myeloid cells (F), splenic CD45+CD3+CD8+ (G) and CD45+CD3+CD4+ T cells (H). VE, vehicle; PD1, anti-PD-1 day 1-4-7; PD11, anti-PD-1 day 11-14-17; CT, anti-CTLA-4 day 1-4-7; PD-1, programmed cell death-1; CTLA-4, cytotoxic T-lymphocyte-associated protein 4.

9D9抗体在不同小鼠肿瘤模型中怎么给药?

1、用量参考

9D9抗体(抗小鼠CTLA-4单克隆抗体、CD152抗体)在小鼠肿瘤模型和其他小鼠模型中通常用于体内CTLA-4中和、肿瘤内调节性T细胞耗竭等研究。9D9抗体在设计使用进行体内研究时,确定其给药的最优剂量和方案是非常重要。根据现有文献报道,我们简要总结了抗小鼠CTLA-4单抗(9D9)在不同小鼠肿瘤模型(Different mouse tumor models)中的给药方案,仅供参考。详情如下表(注意:手机左右滑动查看完整表格):

动物模型 实验动物 剂量与途径
B16黑色素瘤模型 C57BL/6 小鼠(6-8 周龄,雌性或雄性) 100-200 μg/只,腹腔注射 (i.p.),每3天一次,3 次
MC38结肠腺癌模型 C57BL/6 小鼠,雌性,6-8 周龄 200 μg/只,腹腔注射 (i.p.),每3天一次,3 次
CT26结肠癌模型 BALB/c小鼠(雌性,6-8周龄,体重18-22g) 100-200 μg/只,腹腔注射 (i.p.),每3天一次,3-4 次
Sa1N纤维肉瘤模型 A/J小鼠,雌性,6-8周龄 100-200 μg/只,腹腔注射 (i.p.),每3天一次,3-4 次
EMT6乳腺癌模型 BALB/c小鼠(雌性,6-8周龄) 200 μg/只,腹腔注射 (i.p.),每3天一次,3 次
SW1黑色素瘤模型 C3H 小鼠,雌性,6-8 周龄 100 μg/只,腹腔注射 (i.p.),每3天一次,3 次
TC1肺癌模型 C57BL/6小鼠 100 μg/只,腹腔注射 (i.p.),每3天一次,3 次
ID8卵巢癌模型 C57BL/6小鼠 100-200 μg/只,腹腔注射 (i.p.),每3天一次,3-4 次
胃肠道间质瘤模型 C57BL/6 小鼠,雌性或雄性,6-8 周龄,体重 18-22 g 200 μg/只,腹腔注射 (i.p.),每3天一次,3 次
4T1乳腺癌模型 BALB/c小鼠(雌性,6-8周龄) 100-200 μg/只,腹腔注射 (i.p.),每3天一次,3-4 次
Hepa1-6肝细胞癌模型 C57BL/6 小鼠,6-8 周龄,体重 20-25 g 100 μg/只,腹腔注射 (i.p.),每3天一次,3 次

* 以上为常见方案范围,最佳剂量与频次需结合动物状态与实验目的优化。

2、抗小鼠CTLA-4单抗(9D9)在不同小鼠肿瘤模型中的给药方案(含描述和参考文献):

抗小鼠CTLA-4单抗(9D9)在B16黑色素瘤模型中怎么给药?
抗小鼠CTLA-4抗体(9D9)在MC38结肠腺癌模型中怎么给药?
9D9抗体在CT26结肠癌模型中怎么给药?
抗小鼠CTLA-4单抗(9D9)在Sa1N纤维肉瘤模型中怎么给药?
抗小鼠CTLA-4抗体(9D9)在EMT6乳腺癌模型中怎么给药?
9D9抗体在SW1黑色素瘤模型中怎么给药?
抗小鼠CTLA-4单抗(9D9)在TC1肺癌模型中怎么给药?
抗小鼠CTLA-4抗体(9D9)在ID8卵巢癌模型中怎么给药?
9D9抗体在胃肠道间质瘤模型中怎么给药?
抗小鼠CTLA-4单抗(9D9)在4T1乳腺癌模型中怎么给药?
抗小鼠CTLA-4抗体(9D9)在Hepa1-6肝细胞癌模型中怎么给药?

3、推荐产品

您是否在寻求价格合理、高质量的9D9抗体来推进您的研究?Syd Labs以提供体内实验级重组抗小鼠CTLA-4单克隆抗体(克隆号9D9)而闻名,如低内毒素(内毒素1 EU/mg)、极低内毒素(内毒素可低至0.05 EU/mg)、运用重组技术实现了不同分型的自由切换(小鼠版本、Fc沉默版本)。

查找Syd Labs 抗小鼠CTLA-4重组抗体(9D9)产品:抗小鼠CTLA-4单克隆抗体 (9D9)多种型